
E�ective thermal conductivities of a single species and a
binary mixture of granular materials

Shu-San Hsiau*

Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan, 32054, ROC

Received 1 May 1997; received in revised form 28 December 1998

Abstract

The e�ective thermal conductivity is developed by employing the dense-gas kinetic theory. The free
path used in the theory varies with the particle velocity. The analytical results can be used for the whole
range of the product of Biot number and Fourier number provided that the Biot number is less than
0.1. For the very small Biot±Fourier numbers, the conductivities are found to increase with the particle
diameters and the square root of granular temperatures. For the limit of very large Biot±Fourier
numbers, the e�ective thermal conductivity is found to be linearly proportional to the granular
temperature. The e�ective thermal conductivities for the binary mixtures are also derived. The in¯uences
of the species concentration, the total solid fraction and the Biot±Fourier number on the thermal
conductivity are investigated. Increasing the concentration of the smaller particles or reducing the size of
the smaller species can increase the thermal conduction in the binary mixture system. # 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

A granular ¯ow is a two-phase ¯ow with an assembly of discrete solid particles dispersed in
a ¯uid. There are many industrial applications such as the transport of ore, coal, mineral
concentrate, food products or tablets. The gaseous phase plays a negligible role in the ¯ow
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mechanics in these dry noncohesive solid ¯ows. Instead, collisions between the particles and
between the particles and boundaries dominate the ¯ow mechanics and result in random
motions of the particles. In recent years, dense-gas kinetic theories (Chapman and Cowling,
1970) have been applied to analyze the momentum transport relations for granular material
¯ows (Jenkins and Savage, 1983; Lun et al., 1984; Jenkins and Richman, 1985).
In granular ¯ows, the streaming or kinetic mode, and the collisional mode are the two most

important mechanisms to determine the transport properties (Campbell, 1990). The streaming
or kinetic mode denotes the transport of particle properties resulting from the free motions of
particles between collisions. The transfer of the properties during collisions is called the
collisional mode. The application of the dense-gas kinetic theory has advanced the
development of the constitutive relations for the granular material ¯ows (Ahn and Brennen,
1991).
The transport processes in industry also include mixing or segregation of granular materials.

Researchers have begun to investigate these related problems (Savage and Lun, 1988; Hsiau
and Hunt, 1993a, 1996; Hunt et al., 1994; Hsiau and Yu, 1997). Besides, with many of the
transport processes encountered in industry, the granular materials are also dried, heated or
cooled while they are ¯owing (Kunii, 1980; Suzuki et al., 1980; Richard and Raghavan, 1984;
Ferron and Singh, 1991, Duquenne et al., 1994). Industries depend only on empirical
information, and some more general design methods need to be developed for a range of
material ¯ow rates and di�erent types of materials (Stephens and Bridgwater, 1978; Bridgwater
et al., 1985). Most of the heat transfer studies discuss convection and have many similarities to
the convection in ¯uidized beds. The related studies include the heat transfer coe�cient
measurements for ¯ows in inclined chutes (Patton et al., 1986; Ahn, 1989), and in vertical
channels (Sullivan and Sabersky, 1975). However, these studies did not include the e�ects of
particle mixing, and the kinetic theory was not employed.
The thermal conductivity is a very important property, but this property of granular

material receives very little attention. Due to the di�culty in measurement, there was only one
experimental study that measured the thermal conductivity of granular materials performed by
Wang and Campbell (1992) in an annular shear cell. By measuring the temperature and the
heat ¯ux, the e�ective thermal conductivity was determined. Theoretical derivations of the
thermal conductivity were also very few. By mean-free-path argument and assuming that the
¯uctuating velocity distribution was Maxwellian, Hunt and Hsiau (1990) developed a theory
for the e�ective thermal conductivity of low-density granular ¯ows. Hsiau and Hunt (1993b)
analytically developed the e�ective thermal conductivity in a shear-induced granular material
¯ow with a very low product of Biot number and Fourier number. The result was compared
qualitatively with the experimental measurements by Wang and Campbell (1992). Hsiau (1995)
followed similar reasoning, but used a more rigorous assumption to develop the analytical
relation for the e�ective thermal conductivity. The theory is more general and can be used
without the assumption of a very small Biot±Fourier number. The above analyses all used the
averaged mean free path; however, the free path varies with the local particle velocity
(Chapman and Cowling, 1970). The present study used the velocity-varied free path in dense-
gas kinetic theory and derived the e�ective thermal conductivity. The two-dimensional discrete
element simulations were also employed by Hunt (1997) to analyze the thermal conductivity
and compared well with the theoretical results from dense-gas kinetic theory.

S.-S. Hsiau / International Journal of Multiphase Flow 26 (2000) 83±9784



Most studies about granular material are for the single species. However, in real
applications, the particle sizes are usually not uniform. Because of the complications involved
in the transport of multicomponent mixtures, the topic receives little attention. Recently
Jenkins and Mancini (1989) used revised Enskog theory to develop the kinetic theory for
binary mixtures. Hsiau and Hunt (1996) then used the theory to analyze the granular thermal
di�usion phenomena. Based on the dense-gas kinetic theory, the present study derived the
e�ective thermal conductivity for the binary mixtures.

2. Single-sized granular materials

Similar to the motions of molecules in a gas, the particles in a granular material have
velocities and associated properties that deviated from the mean value. Employing the dense-
gas kinetic theory (Chapman and Cowling, 1970), the ¯uctuating velocities of the particles are
assumed to follow the singlet velocity distribution function f (1)(C). Since the particle motion is
not self-sustaining, the velocity distribution function is not Maxwellian. In this case, the singlet
velocity distribution function is assumed to be

f �1��C� � f �0��C��1� F� �1�
where C is the ¯uctuating velocity and F is a perturbation term, FW1. The Maxwellian
distribution function is expressed as follows:

f �0��C� � n

�2pY�3=2 exp

�
ÿ C 2

2Y

�
�2�

where n is the number density, C is the magnitude of the ¯uctuating velocity C, and Y is the
granular temperature. Analogous to the temperature in the gases, the granular temperature
quanti®es the speci®c kinetic energy of the granular system and is de®ned by Y=hC 2i/3. The
symbol h i denotes the ensemble-average quantity. The ensemble average of any system
property C (such as mass, momentum or energy) is de®ned as:

hCi � 1

n

�
Cf �1��C� dC �3�

where f (1)(C) dC means the probable number of particles per unit volume with a ¯uctuating
velocity within the velocity element dC centered at C and dC=dCx dCy dCz. Because of the
complexity of the perturbation function F, it is not listed here and can be found in the papers
by Lun et al. (1984) and by Hsiau and Hunt (1993b). It should be mentioned that the
perturbation function F is an odd function of Cy.
All particles are assumed identical, spherical, smooth (no friction) and nearly elastic. All

collisions in the granular ¯ow system are assumed to be binary collisions. A pair distribution
function is de®ned as the number of pairs of contacting particles i and j having velocities
within the range Ci to Ci+dCi and Cj to Cj+dCj (Lun et al., 1984):

f �2��Ci,Cj � � g0�n�f�1��Ci �f �1��Cj � �4�
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where n is the solid fraction, and g0(n ) denotes a correction factor which is called as the radial
distribution function. An empirical form of this radial distribution function is given by
Carnahan and Starling (1969) as follows:

g0�n� � �2ÿ n�=2�1ÿ n�3 �5�
Consider a small local region and assume properties are constant in this small region. Assume
that the particle has a diameter of d, a thermal conductivity of kp, a speci®c heat of cp, a total
surface area of Ap, and a heat transfer coe�cient between the particle and the surrounding
¯uid, h. Only the temperature gradient in the y direction is considered, as shown in Fig. 1. For
Biot number, Bi=hd/kp, less than 0.1, the lumped system analysis can be employed for the
particles. In the granular material, the heat transfer resulting from the ¯uid motions is
neglected because the heat capacity and density of the ¯uid are much smaller than those of
particles (Hsiau and Hunt, 1993b; Hsiau, 1995; Hunt, 1997). The thermal radiation is also
neglected in the present analysis. Consider a particle moving a short distance l to a new
position with ¯uid temperature T0. By solving the energy equation, the particle temperature at
the new position can be obtained (Hsiau and Hunt, 1993b):

T � T0 ÿ Cys
dT

dy

�
1ÿ exp

�
ÿ ly

sCy

��
�6�

where s=mcp/hAp, m is the particle mass, ly is the y component of l, Cy is the y component of
the particle's ¯uctuating velocity C. The dimensionless group ly/sCy=l/sC is the product of the
Biot number and the Fourier number, where the Fourier number is Fo=kptAp/dmcp.
The excess energy carried by the particle to this position relative to the surrounding ¯uid is

De=mcp(TÿT0). Using ly/sCy=l/sC in Eq. (6) and assuming that the characteristic length l is
the free path, l, of the particles in the ¯ow ®eld, the excess energy is found as:

De � ÿmcpsCy

�
1ÿ exp

�
ÿ l

sC

��
dT

dy
�7�

The conduction between particles during collisions is negligible because the collisional time is

Fig. 1. Con®guration for the thermal energy ¯ux.
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very short and the contact area is very small (Sun and Chen, 1988). Therefore, only the
streaming mode is considered in the heat transfer. The heat ¯ux in y direction is found by
integrating the product of Cy and the excess energy carried by particles over the entire velocity
space:

qy � nhDeCyi �
�
DeCyf

�1��C�dC �8�

Substituting Eqs. (1) and (7) into Eq. (8) and noting that the product of DeCy and the
perturbation part of f (1) is an odd function of Cy, the local heat ¯ux becomes

qy � ÿ4p
3
mncp

s

�2pY�3=2
dT

dy

�1
0

C 4

�
1ÿ exp

�
ÿ l

sC

��
exp

�
ÿ C 2

2Y

�
dC �9�

Treating Eq. (9), Hsiau (1995) used two methods: (1) taking the free path as the mean value,
l=d/[6

���
2
p

ng0(n )]; (2) taking l/C as the averaged collisional frequency. However, in the
rigorous kinetic theory, the free path is dependent on the ¯uctuating velocity (Chapman and
Cowling, 1970). Hunt (1997) used the two-dimensional discrete element method to simulate the
free paths of particles in a sheared granular ¯ow and demonstrated that the free path was
dependent on the ¯uctuating velocity. Using the similar mathematical derivation by Chapman
and Cowling, but considering the e�ect of the volume occupied by particles (the solid fraction
n and the radial distribution function g0), the free path of granular materials can be derived as:

l�C � � w2���
p
p

nd 2E�w�g0�n� �10�

where w=C/
�������
2Y
p

and E(w ) denotes the function

E�w� � weÿw
2 � �2w2 � 1�

�w
0

eÿv
2

dv �11�

Then from Eq. (9), the thermal conductivity can be expressed as

keff � 8

3
���
p
p

B
rpcp dnGY1=2 �12�

where G represents the dimensionless integral

G �
�1
0

w4

�
1ÿ exp

�
ÿ Bw

6
��������
2=p
p

E�w�ng0�n�
��

eÿw
2

dw �13�

and B is a dimensionless parameter: B= d/sY1/2, rp is the particle density. Note that
B/BiFo=(d/l )(C/Y1/2) is a ®nite number. Therefore B approaches 0 when BiFoW1 and
approaches to in®nity when BiFow1.
The thermal conductivity can be non-dimensionalized by rpcpdY

1/2 and Eq. (12) becomes:
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keff

rpcpdY
1=2
� 8nG

3
���
p
p

B
�14�

For the limit of BW1(BiFoW1), Eq. (13) can be simpli®ed as

G � B

6
��������
2=p
p g

ng0�n� �15�

where

g �
�1
0

w5eÿw
2

E�w� dw � 0:209756 �16�

Then the dimensionless conductivity becomes

keff

rpcpdY
1=2
� 2

���
2
p

9

g
g0�n� �17�

Comparing with Hsiau and Hunt's (1993b) derivation (ke�/rpcpdY
1/2=1/[9

���
p
p

g0(n )]), the
current result is 5.16% higher. Since Hsiau and Hunt (1993b) under predicted the thermal
conductivity measured by Wang and Campbell (1992), the current analysis shows a better
accuracy.
For the very small B, the thermal conductivity is proportional to the square root of the

granular temperature, as shown in Eq. (17). For the very large B, the conductivity can be
simpli®ed and found to be linearly proportional to the granular temperature:

keff � rpcpdY
1=2n=B � rcpsY �18�

where r=mn=rpn and the result is the same as that of Hunt and Hsiau's (1990) and Hsiau's
(1995).
Fig. 2 shows the dimensionless thermal conductivity ke�/rpcpdY

1/2 varied with the solid
fraction n for di�erent values of B. For B 4 0, the thermal conductivity is found to decrease
with the increase of B for the same solid fraction. Since BA 1/Y1/2, the smaller granular
temperature (larger B ) results in a less random granular ¯ow causing less thermal energy
transferred. Therefore the e�ective thermal conductivity is smaller.
From Fig. 2, for the very small value of B (0.001), the dimensionless thermal conductivity

decreases with the solid fraction. The curve for B= 0.001 is almost coincident with that for
B 4 0. It means that the very small B approach can be used for the case of B R 0.001. As
discussed above, only the streaming mode is considered in heat transfer, hence, for the ¯ow
with higher solid fraction, there are more particles transporting the thermal energy in the
¯ow®eld. However, the free path also decreases with the increase of the solid fraction,
lA 1/[ng0(n )] (see Eq. (10)). This e�ect reduces the heat transfer rate because of the particle
collisions. For the case of smaller B (larger granular temperature), the latter factor is more
important and the thermal conductivity decreases with the increase of solid fraction. The
exception of the increasing trend is for a very small solid fraction (n < 0.001), as shown in the
small ®gure (extracted from Fig. 2 for n < 0.01) attached to Fig. 2. For the limit case of zero
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solid fraction (n=0), the e�ective thermal conductivity should be 0 since there is no granular
material. Note that the approach of B 4 0 is failed in this limit case.
Contrary to the small B case, for the limit of very large B, the conductivity is linearly

proportional to the solid fraction (see Eq. (18)). From Eq. (7), the factor inside the bracket
increases with the solid fraction rapidly for the very large values of B, i.e. the excess energy
carried by each particle increases markedly with solid fraction. Therefore, the thermal
conductivity increases with the solid fraction for the very large values of B (1000) as shown in
Fig. 2. For the moderate values of B, the thermal conductivity ®rst increases with the solid
fraction until reaching the maximum value, and then decreases with the solid fraction. From
the small ®gure attached in Fig. 2, the thermal conductivity should approach 0 when the solid
fraction approaches 0.

3. Binary mixture of granular materials

Let the subscripts a and b represent two di�erent species in the binary mixture, and the
indices i, j are either a or b. All particles are assumed spherical, smooth and slightly inelastic.

Fig. 2. The dimensionless thermal conductivity varied with solid fraction for di�erent B values.
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Similar to Eq. (1), the singlet velocity distribution function is assumed to be

f
�1�
i �Ci � � f

�0�
i �Ci ��1� Fi � �19�

where Fi is the perturbation term with a very complicated form which can be found in Jenkins
and Mancini's paper (1989) and f (0)i (Ci) is the Maxwellian distribution function:

f
�0�
i �Ci � � ni

�2pYi �3=2
exp

�
ÿ C 2

i

2Yi

�
�20�

where Yi is the granular temperature of species i de®ned by Yi0hC 3
i i/3. The granular

temperature of the mixture is then de®ned by (Farrel et al., 1986; Jenkins and Mancini, 1989)

Y � 1

m0n
�raYa � rbYb� �21�

where n is the total density, n=na+nb, ra and rb are the bulk densities for the two species in
the ¯ows, ri=rpini=mini, and m0=ma+mb. For a binary mixture, the equipartition of
¯uctuating energy is assumed (Shen, 1984; Farrel et al., 1986; Jenkins and Mancini, 1989):

3

2
maYa � 3

2
mbYb �22�

Then the Maxwellian distribution function for the ith species is rewritten as

f
�0�
i �Ci � � ni

�
mi

2pm0Yi

�3=2

exp

�
ÿ miC

2
i

2m0Yi

�
�23�

The pair-distribution function for particles i and j is de®ned as

f
�2�
ij �Ci,Cj � � gijf

�1�
i �Ci �f �1�i �Cj � �24�

where gij is the radial distribution function of two particles evaluated when particles are in
contact and is expressed as (Kincaid et al., 1983; Jenkins and Mancini, 1989):

gij �
"
Z 2 � 3didj

di � dj
ZZ2 � 2

�
didj

di � dj

�2

Z 2
2

#
=Z 3 �25�

where

Zl � p
6

X
j�a,b

njd
l
j

l � 1,2,3

Z � 1ÿ Z3 �26�
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Since the perturbation term in Eq. (19) is very small, it is neglected in the present study to
simplify calculations.
For heat transfer, only the streaming mode is considered. Then the heat ¯ux in the y

direction can be found as:

qy � nahDeaCayi � nbhDebCbyi �27�
where Dei denotes the excess energy carried by particle i:

Dei � ÿmicpisiCiy

�
1ÿ exp

�
ÿ li

siCi

��
dT

dy
�28�

The free path of species i in Eq. (28) is denoted by li which can be derived from the dense-gas
kinetic theory (Chapman and Cowling, 1970),

li � w2
i =E�wi �

nid
2
i

���
p
p

gii � njd
2
ij

���
p
p ������������

mi=mj

p
gij

j 6� i �29�

where wi=Ci

������������������������mi=2m0Y�
p

and dij=(di+dj )/2.
Using the dimensionless parameter Bi=di/siY

1/2
i , the term li/siCi in Eq. (28) can be

expressed as

li
siCi
� wiaiBi �30�

where

ai � 1������
2p
p

E�wi ��nid 3
i gii � njdid

2
ij

������������
mi=mj

p
gij �

j 6� i �31�

Substituting Eqs. (28) and (30) into Eq. (27), the e�ective thermal conductivity is found as:

keff � 8

3
���
p
p

X
i�a,b

m0

miBi
rpicpidiniGiY

1=2 �32�

where Gi denotes the integral

Gi �
�1
0

w4
i �1ÿ ewiaiBi �eÿw2

i dwi �33�

If a=b, Eq. (32) can be simpli®ed to Eq. (12) (except the di�erent representations of the radial
distribution functions and noting Y=Ya/2=Yb /2) which is for the single-sized granular
materials.
For (BiFo )iW1, i.e. BiW1, the term 1ÿewiaiBi approaches wiaiBi and Eq. (32) is simpli®ed to

keff � 8

3
���
p
p

X
i�a,b

m0

mi
rpicpidinigiY

1=2 �34�
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where

gi �
�1
0

aiw5
i e
ÿw2

i dwi �35�

The thermal conductivity for this case is proportional to the square-root of the granular
temperature.
For (BiFo )iw1, i.e. Biw1, from Eq. (33), the value of Gi is found to be 3

���
p
p

=8. Then the
thermal conductivity in Eq. (32) can be simpli®ed to

keff �
X
i�a,b

m0

mi
ricpisiY �36�

The thermal conductivity for this case is linearly proportional to the granular temperature.
Assuming that the two types of particles are of the same material, i.e. rpa=rpb=rp,
cpa=cpb=cp, then the thermal conductivity can be non-dimensionalized as

keff

rpcpdaY
� 8

3
���
p
p

"
�1� �db=da�3�naGa

Ba
� db

da

�1� �da =db�3�nbGb

Bb

#
�37�

If da=2 db, by the de®nitions of Bi and si, Eq. (22), and the heat transfer correlation for ¯ows
passing a sphere (Incropera and De Witt, 1990), the following relation is derived: Ba=2Bb.
Using Ba=20 and Bb=10, Eq. (37) can be calculated for di�erent values of na/n, and the
results are plotted in Fig. 3. Since the Bi values are moderate, there exists a maximum value of
the e�ective thermal conductivity, as discussed in last section (see Fig. 2). It is found that the
greater the number of smaller particles (lower na/n value), the higher the e�ective thermal
conductivity. Note that from Eq. (12), the conductivity is proportional to the product of the
particle diameter and the square root of granular temperature for a single-sized material. In a
binary mixture, the granular temperature of the smaller particles is greater than that of the
larger particles (see Eq. (22)). When the number of smaller particles increases (na/n decreases),
the product of diY

1/2
i is greater for the smaller species which results in the increase of the

overall thermal conductivity of the system (see Eq. (34)).
Fig. 4 shows the e�ective thermal conductivity of the binary mixture (ke�) varied with na/n

for Ba=20, Bb=10, and total solid fractions of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. The e�ective
thermal conductivity of the binary mixture ke� is non-dimensionalized by the thermal
conductivity of the single species b, (ke�)b. If the system is not too dense (n < 0.5), the thermal
conductivity decreases when the number of larger particles increases (greater na/n value). This
information can also found from Fig. 3, but for a very dense system, the thermal conductivity
increases very slowly with the increase of na/n. Until reaching the maximum value, the thermal
conductivity decreases rapidly with the increase of na/n.
With na/n=0.5 and Ba=20, Fig. 5 shows the e�ective thermal conductivity plotted against

the total solid fraction for di�erent values of Bb. The trends of curves are similar to those in
Fig. 3. For the smaller Bb, the maximum values of thermal conductivity occurs at the lower
total solid fraction. This phenomena is also shown in Fig. 2 for the single species materials.
From Fig. 5, the e�ective thermal conductivity increases with the decrease of Bb (smaller Bb
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denotes smaller size of the smaller particles). Therefore, increasing the concentration or
reducing the size of the smaller species can cause the increase of thermal conduction in the
system.

4. Conclusions

The dense-gas kinetic theory is employed to investigate the thermal conduction in a granular
¯ow. The concept of velocity-dependent free path is introduced in the derivations. The
analytical results can be used for the whole range of the product of Biot and Fourier numbers
if the Biot number is less than 0.1. For the system with a very small BiFo value, the thermal
conductivity is proportional to the square-root of the granular temperature and decreases with
the increase of the solid fraction. The current result is more accurate than Hsiau and Hunt's
(1993b). For the very large BiFo values, the conductivity is linearly proportional to the

Fig. 3. The dimensionless thermal conductivity for a binary mixture varied with total solid fraction, Ba=20, Bb=10.
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granular temperature and the solid fraction. For the moderate BiFo values, the conductivity
increases with the solid fraction when the solid fraction is small and reaches the maximum
value, then starts to drop with the increase of solid fraction. The thermal conductivity for the
binary mixture system is also derived. For binary-sized systems with the same total solid
fraction, the higher concentration of the smaller species results in the greater thermal
conductivity provided that the system is not very dense. Reducing the size of smaller particles
is also helpful in increasing the thermal conductivity.
Due to the di�culty in the measurements in granular systems, there are still no appropriate

experimental data available for comparison. However, the current study provides an analytical
model to evaluate the e�ective thermal conductivities in single-sized and binary mixture of
granular materials, which should be very helpful in the development of the research ®eld about
granular ¯ows, and can also provide more design information for the related industries. The
next important subject for researchers is to develop the experimental technique to measure the
thermal properties in granular ¯ows.

Fig. 4. The e�ective thermal conductivity (ke�/(ke�)b) varied with na/n for di�erent total solid fractions, Ba=20,

Bb=10.
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